- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Tuckerman, Mark E. (1)
-
Winey, Karen I. (1)
-
Zelovich, Tamar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Fuel-cell deployable proton exchange membranes (PEMs) are considered to be a promising technology for clean and efficient power generation. However, a fundamental atomistic understanding of the hydronium diffusion process in the PEM environment is an ongoing challenge. In this work, we employ fully atomistic ab initio molecular dynamics to simulate diffusion mechanisms of the hydronium ion in a model PEM. In order to mimic a precise polymer with a layered morphology, as recently introduced by Trigg, et al. , Nat. Mater. , 2018, 17 , 725, a nano-confined environment was created composed of graphane bilayers to which sulfonate end groups (SO 3 − ) are attached, and the space between the bilayers was subsequently filled with water and hydronium ions up to λ values of 3 and 4, where λ denotes the water-to-anion ratio. We find that for the low λ value, the water distribution is not homogeneous, which results in an incomplete second solvation shell for H 3 O + , fewer water molecules in the vicinity of SO 3 − , and a higher probability of obtaining a coordination number of ∼1 for the nearest oxygen neighbor to SO 3 − . These conditions increase the probability that H 3 O + will react with SO 3 − according to the reaction SO 3 − + H 3 O + ↔ SO 3 H + H 2 O, which was found to be an essential part of the hydronium diffusion mechanism. This suggests there are optimal hydration conditions that allow the sulfonate end groups to take an active part in the hydronium diffusion mechanism, resulting in high hydronium conductivity. We expect that the results of this study could help guide synthesis and experimental characterization used to design new PEM materials with high hydronium conductivity.more » « less
An official website of the United States government
